Defective PTH regulation of sodium-dependent phosphate transport in NHERF-1-/- renal proximal tubule cells and wild-type cells adapted to low-phosphate media.
نویسندگان
چکیده
The present experiments using primary cultures from renal proximal tubule cells examine two aspects of the regulation of sodium-dependent phosphate transport and membrane sodium-dependent phosphate transporter (Npt2a) expression by parathyroid hormone (PTH). Sodium-dependent phosphate transport in proximal tubule cells from wild-type mice grown in normal-phosphate media averaged 4.4 +/- 0.5 nmol.mg protein(-1).10 min(-1) and was inhibited by 30.5 +/- 8.6% by PTH (10(-7) M). This was associated with a 32.7 +/- 5.2% decrease in Npt2a expression in the plasma membrane. Proximal tubule cells from Na(+)/H(+) exchanger regulatory factor-1 (NHERF-1)(-/-) mice had a lower rate of phosphate transport compared with wild-type cells and a significantly reduced inhibitory response to PTH. Wild-type cells incubated in low-phosphate media for 24 h had a higher rate of phosphate transport compared with wild-type cells grown in normal-phosphate media but a significantly blunted inhibitory response to PTH. These data indicate a role for NHERF-1 in mediating the membrane retrieval of Npt2a and the subsequent inhibition of phosphate transport in renal proximal tubules. These studies also suggest that there is a blunted phosphaturic effect of PTH in cells adapted to low-phosphate media.
منابع مشابه
Adenoviral expression of NHERF-1 in NHERF-1 null mouse renal proximal tubule cells restores Npt2a regulation by low phosphate media and parathyroid hormone.
Sodium-dependent phosphate transport in NHERF-1(-/-) proximal tubule cells does not increase when grown in a low phosphate media and is resistant to the normal inhibitory effects of parathyroid hormone (PTH). The current experiments employ adenovirus-mediated gene transfer in primary cultures of mouse proximal tubule cells from NHERF-1 null mice to explore the specific role of NHERF-1 on regula...
متن کاملRetraction. Parathyroid hormone inhibits renal phosphate transport by phosphorylation of serine 77 of sodium-hydrogen exchanger regulatory factor-1.
Parathyroid hormone (PTH), via activation of PKC and/or protein kinase A, inhibits renal proximal tubular phosphate reabsorption by facilitating the internalization of the major sodium-dependent phosphate transporter, Npt2a. Herein, we explore the hypothesis that the effect of PTH is mediated by phosphorylation of serine 77 (S77) of the first PDZ domain of the Npt2a-binding protein sodium-hydro...
متن کاملNHERF-1 is required for renal adaptation to a low-phosphate diet.
The sodium-dependent renal phosphate transporter (Npt2, Na-Pi IIa) is the major regulated phosphate transporter in the renal proximal convoluted tubule. Npt2 associates with a number of PDZ-containing proteins including Na+H+ exchanger regulatory factor-1 (NHERF-1). To determine whether NHERF-1 is involved in the acute regulation of phosphate transport, wild-type and NHERF-1 (-/-) mice were sta...
متن کاملEzrin promotes functional expression and parathyroid hormone-mediated regulation of the sodium-phosphate cotransporter 2a in LLC-PK1 cells.
The sodium-phosphate cotransporter 2a (NPT2a) is the principal phosphate transporter expressed in the brush border of renal proximal tubules and is downregulated by parathyroid hormone (PTH) through an endocytic mechanism. Apical membrane expression of NPT2a is dependent on interactions with the sodium-hydrogen exchanger regulatory factor 1 (NHERF-1). An LLC-PK1 renal cell line stably expressin...
متن کاملDynamics of PTH-induced disassembly of Npt2a/NHERF-1 complexes in living OK cells.
Parathyroid hormone (PTH) inhibits the reabsorption of phosphate in the renal proximal tubule by disrupting the binding of the sodium-dependent phosphate transporter 2A (Npt2a) to the adapter protein sodium-hydrogen exchanger regulatory factor-1 (NHERF-1), a process initiated by activation of protein kinase C (PKC). To gain additional insights into the dynamic sequence of events, the time cours...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 289 4 شماره
صفحات -
تاریخ انتشار 2005